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1 Introduction

Hyperspectral sensors measure spectral radiance for a number of contiguous spatial locations to form an

image. Several imaging spectrometers provide spectral coverage with hundreds of bands over the visible through

short-wave infrared from 0.40 to 2.45 micrometers (Basedow et al., 1995) (Vane et al., 1993) (Simi et al., 2000).

Hyperspectal data with its high spectral resolution may be used to identify speci�c features on the earth's surface

such as soils with di�erent composition.

Developing eÆcient methods to process hyperspectral data becomes important as the number of spectral

bands increases. Many existing algorithms for processing hyperspectral data are the direct outgrowth of algo-

rithms that were developed for single band or multispectral sensors where the number of bands is small. These

approaches resort to a variety of approximations to reduce the computational burden. Important questions for

these approaches include which data-reduction procedure to use and which features to compute.

A large number of techniques for analyzing image texture have been proposed (Haralick, 1979) (Reed et al.,

1993). Recent work on texture analysis mainly focuses on statistical approaches and �lter-based approaches.

The statistical approach characterizes textures as arising from probability distributions on random �elds. This

approach typically uses a small number of parameters to provide a concise representation for textures. Markov

random �elds (MRF) (Cross et al., 1983) (Li, 1995) are a popular statistical model for texture. However,

these models require prior selection of spatial structure. Multiband correlation models allow for a more generic

representation and have been used for geometry-invariant recognition (Kondepudy et al., 1994) and illumination-

invariant recognition (Healey et al., 1996) (Healey et al., 1995). Filter-based approaches (Daugman, 1985)

(Mallat, 1989) are inspired by multi-channel �ltering mechanisms in human vision. Gabor �lters have been

used extensively to compute texture features for image interpretation tasks (Bovik et al., 1990) (Jain et al.,

1991) (Manjunath et al., 1996). These �lters achieve optimal joint localization in space and spatial frequency

(Daugman, 1985) and can be used to decompose images into components corresponding to di�erent scales and

orientations.

The modeling of hyperspectral textures is important for many applications including terrain classi�cation

and material identi�cation. The number of spectral bands in hyperspectral imagery provides a large number

of spectral/spatial correlations that can be exploited for texture modeling. There have been few attempts to

�Department of Electrical and Computer Engineering, University of California, Irvine, CA 92697

(mshi@ece.uci.edu;healey@ece.uci.edu)



exploit texture information in hyperspectral images. Schweizer and Moura (Schweizer et al., 2001) used Gaussian

Markov random �elds to model hyperspectral textures to support detection applications.

In this paper, we introduce a representation for hyperspectral textures using unichrome and opponent features

computed from Gabor �lter outputs. The unichrome features are computed from the spectral bands indepen-

dently while the opponent features combine information across di�erent bands at di�erent scales. Using an

AVIRIS data set acquired at Indian Pines in 1992, we evaluate the performance of the multiscale approach using

opponent features for recognizing hyperspectral textures.

2 The Gabor Texture Features

Figure 1: Gabor function approximation of type II opponent cell

Gabor �lters are de�ned in the spatial domain by
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1
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where m is the index for the scale and n is the index for the orientation. We consider a �lter bank with two

scales and four orientations (0Æ; 45Æ; 90Æ and 135Æ).

2.1 Unichrome features

Unichrome features are extracted from a single spectral band. Let Li(x; y) be the ith spectral channel of a

hyperspectral image and let fmn(x; y) be a �lter in the �lterbank. Denote the �ltered image

himn(x; y) = Li(x; y) � fmn(x; y) (2)

and the unichrome feature Uimn by

Uimn =

vuut X
x;y

h2
imn

(x; y)

!
(3)

For C spectral channels, M scales, and N orientations, a set of CMN unichrome features can be computed.



2.2 Opponent features

Hering's opponent process theory (Goldstein, 1996) of human color vision was formulated in the 1800's and

later experimentally tested by Hurvich and Jameson (Hurvich et al., 1957). The theory is still a subject of strong

interest (Masland, 1996). We can use Gabor functions to model receptive �eld structure on the retina. For

example, we can approximate a type II cell response (Wiesel et al., 1966) using the di�erence of Gabor functions

at the same scale (see Fig. 1). For �ltered bands himn(x; y) and hjmn(x; y), we consider the normalized di�erence

dijmn(x; y) =

�
himn(x; y)

Uimn

�

hjmn(x; y)

Ujmn

�
(4)

Then the type II opponent feature  ijmn (Wiesel et al., 1966) (Jain et al., 1998) is obtained by

 ijmn =

vuut X
x;y

d2
ijmn

(x; y)

!
(5)

By normalization in (4), we remove information that is already contained in the unichrome features of (3).

The opponent features capture the spatial correlation between di�erent spectral channels at a certain scale and

orientation.

3 Experiments

3.1 Data set

We used AVIRIS (Vane et al., 1993) hyperspectral data for our experiments from Purdue University's Mul-

tiSpec web site1. The 20m GSD data was acquired over the Indian Pine Test Site in Northwestern Indiana in

1992. Band 8 (0.58{0.62�m) of this data is shown in Fig. 2. From the data, we obtained 50 test texture images

of size 10 � 10 pixels which belong to the following 8 texture classes: Corn-notill, Corn-min, Soybean-notill,

Soybean-min, Grass/Trees, Grass/Pasture, Woods, and Hay-windrowed.

3.2 Band reduction

As the number of spectral channels increases, the ability to discriminate similar ground cover classes should

also increase. Often the number of pixels available to texture classi�cation techniques is limited, thus limiting

the accuracy with which texture characteristics can be estimated. From the 220 AVIRIS bands, we chose a 126

band subset by excluding bands with low signal due to water absorption or the solar radiance function. Fig. 3

plots an AVIRIS spectral radiance function using the 126-band data set. In order to reduce the dimension of

the spectral space, we average every three adjacent spectral bands of the 126 spectral bands to get 42 spectral

bands. This signi�cantly reduces feature computation requirements. Fig. 4 shows the spectral radiance function

corresponding to �gure 3 in the reduced band system using the 42 spectral bands.

3.3 Feature subset selection

For �lters de�ned using 2 scales and 4 orientations, there are a total of 336 unichrome features for the 42

spectral bands. We compute opponent features  ijmn for all i; j with i = 1; 2; : : : ; 42; j = 1; 2; : : : ; 42 and i 6= j
1http://dynamo.ecn.purdue.edu/�biehl/MultiSpec/



Figure 2: Band 8 (0.58{0.62�m) of AVIRIS Indian pine test site image

to get 6888 opponent features. Thus, a test texture image can be represented by a vector of 7224 unichrome and

opponent features. We compute a mean feature vector for each of the 8 texture classes by averaging the feature

vectors for all of the test texture images of that texture class.

We de�ne a distance metric between two feature vectors by

dij =

pX
k=1

 
f i
k
� f

j

k


(fk)

!2

(6)

where (f i
1
; f i

2
; : : : ; f i

p
) is the feature vector for texture image i and (f

j

1
; f

j

2
; : : : ; f j

p
) is the feature vector for texture

image j. 
(fk) is the standard deviation of fk over the 8 texture classes. For each test texture image, we compute

the distance of the test texture image from the mean feature vector for each of the eight texture classes using

(6). We classify a test texture image as an instance of nearest class. We can use a stepwise optimal algorithm to

build up approximately optimal feature subsets. At each step, we add a new feature that leads to a maximum

increase in classi�cation rate.

3.4 Classi�cation results

We show a comparison of the classi�cation performance for the best subsets of six feature sets in Fig. 5.

The �rst feature set includes the 42 mean features and 42 variance features. The mean feature is de�ned

by mi = 1

100

P
x;y

Li(x; y) with Li(x; y) denoting the ith spectral band. The variance feature is de�ned by

vari =
1

100

P
x;y

(Li(x; y) �mi)
2. The second feature set includes only the 42 mean features. The third feature

set includes only the 42 variance features. The fourth feature set includes the 336 unichrome features. The �fth

feature set includes the 6888 opponent features. The sixth feature set includes all 7224 unichrome and opponent

features. We see that for a given number of features, the mean and variance feature set performs better than only

the mean or only the variance feature set. The unichrome feature set performs better than the mean and variance

feature set. We also see that using the opponent features signi�cantly improves the classi�cation accuracy over

only using the unichrome features.
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Figure 5: Best classi�cation rate for each of six feature sets

3.5 An example

Texture class 1 (Corn-notill) and texture class 2 (Corn-min) are taken as an example to illustrate how the use

of opponent features improves classi�cation performance. There are seven test texture images of size 10� 10 in

class 1 and �ve test texture images of size 10�10 in class 2. We de�ne a unichrome �ltered image by jhimn(x; y)j

and an opponent �ltered image by jdijmn(x; y)j so that the square of the unichrome feature de�ned by (3) is the

energy of the unichrome �ltered image and the square of the opponent feature de�ned by (5) is the energy of

the opponent �ltered image. We label several points in �gure 5 with Ai or Bi symbols. We denote the best two

unichrome features at A1 as �1; �2, the added unichrome feature at A2 as �3, and the added unichrome feature

at A3 as �4. Point B1 coincides with point A1 since the best two selected features from the unichrome and

opponent feature set are only unichrome features. We then denote the added opponent feature at B2 as  1 and

the added opponent feature at B3 as  2. Fig. 6 displays the �ltered images for the seven 10� 10 instances of

texture 1. From top to bottom in Fig. 6 are �ltered images corresponding to �1; �2; �3,  1 and  2. Similarly, the

�ltered images for the �ve instances of texture 2 are shown in Fig. 7. We see that while the unichrome �ltered

images for the two texture classes are quite similar, the opponent �ltered images are signi�cantly di�erent. The

opponent �ltered images for texture class 1 have more energy than the opponent �ltered images for texture class

2. This can also be seen by examining the computed features shown in Table 1. The values of �1; �2, and �3 are

close for the two classes while the values of  1 and  2 are signi�cantly larger for class 1 than for class 2.

Using (6), we also compute the distance between the mean of the seven instances of texture class 1 and the

mean of the �ve instances of texture class 2 at points A1; A2; A3; B2 and B3. The results are shown in Table 2.

For a �xed number of features, the distance increases greatly with the opponent features added to the feature



set. This indicates that texture classes 1 and 2 are more easily discriminated when using the opponent features

versus only unichrome features.

To show why the opponent features improve classi�cation performance, we consider the �rst selected opponent

feature  1 which captures the spatial correlation between band 9 and band 28 at a certain scale and orientation.

 1 is much larger for texture class 1 than for texture class 2 which suggests that the band 9 and band 28

intensities across rows are more correlated for texture class 2 than for texture class 1. If normalized band 9 and

band 28 are equal, then from (4) the opponent feature  1 will be zero. We compute normalized intensities of

band 9 and band 28 for texture class 1 along a row by averaging the rows of the �ltered image for these two

bands respectively. The normalized intensities are plotted in Fig. 8. Similarly, we plot the normalized intensities

for texture class 2 in Fig. 9. As we can see, the normalized band 9 and band 28 curves are more similar for

texture class 2 than for texture class 1.

Figure 6: Filtered images for texture 1 (from top to bottom: �1; �2; �3;  1;  2)

Figure 7: Filtered images for texture 2 (from top to bottom: �1; �2; �3;  1;  2)
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